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We propose a new analytical solution for the problem familiar from the theory of  hot compression in 
connection with the axial unilateral compression of a viscous "porous material in a cylindrical mold. 

Interest in the problem of axial unilateral compression of  a viscous porous material has been generated both by 
the development of  the technology of  hot pressforming methods and the study of high-temperature rheology in powder 

materials. In its initial stage, this was treated under an assumption of  density uniformity and an absence of friction at 
the walls [1, 2]. The analytical solution derived thereby was utilized as a basis for the selection of viscosimetric and rheological 

variables and the establishment of a method a priori to determine the unknown properties of the material and the parameters 

governing their dependence on density [3]. The studies [4, 5] are devoted to investigations into the unique features encountered 

in this type of deformation, in conjunction with the nonuniformity of density distribution, and the method of characteristics 

was used in these studies to derive a system of  integrodifferential  equations to determine the density of a material and 

its flow velocity, and here the authors also established certain important quantitative relationships governing the compression 
of a material for a particular type of  deformation. In the following we analyze the analytical solution of the problem 

under consideration in Lagrange variables. This allows us more clearly to interpret the derived results and to establish 
new quantitative relationships with respect to compression, thus expanding the physical concepts relative to this process. 

In particular, among such results we must include the fact that within the framework of the adopted assumptions we are 
confronted with a regular compression regime. It is demonstrated that the fundamental operational characteristic of the 

process, i.e., the relationship between the speed of the piston and the applied force for fixed instants of time is nonmonotonic 

in nature, which is a result of the competition between the effect  of  the load factors and the volumetric viscosity that 

is dependent on density. 
Formulation of the Problem. Let  us examine the unilateral compression of a viscous porous material in a cylinder 

closed at the bottom (z --- 0) and bounded on the top [z = H(t)] by means of a moving piston. The normal forces N(t) applied 

to the piston generates stresses a r, a o, and tr~ within the material. The force of  friction against the walls of  the mold can 

be neglected. We will adopt the hypothesis of  plane cross sections, according to which we have only a single nonzero 

velocity component v~ -- v ~ 0 in the material. 
For the description of the selected type of flow in a compressed material we find in [1] a system of continuity 

equations and equations of motion, in conjunction with rheological relationships, such as those that are extensively used 

in the theory of  hot compression. In the following we will examine the system in Lagrange coordinates, related to particles 

fixed within the medium under consideration, although in motion. The utilization of these coordinates in the description 

of the motion of  compressed materials frequently allows us to derive analytical solutions for the problems and establishes 
certain advantages in the interpretation of the results. As in the case of gasdynamics [6], as our Lagrange coordinates 

it is convenient to choose the time r and the quantity q, equal to the mass of the material located between the cross sections 

z--- 0 and z = z: 

2 

(z, t) = t, q (z, t) = ( 0 (z, t) a z  
0 

H(l) 
Let us note that M = t" p (z, t) dz determines the entire mass of the billet exhibiting a height H(t). 

When we take into consideration the empirical relationship between the shearing viscosity t /and the volumetric 

viscosity ~ from [7] as functions of  the density, namely: 
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~1 = ~hp m, 
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the original equations are written in Lagrange form as follows: 
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In order to solve the original system of equations we have to specify the initial distribution of  the density with 

respect to the mass coordinate q: 

= o, p = po(q) (6) 

and the boundary conditions. At the lower boundary of the compressed material we assume a condition of  adhesion 

q = O ,  v (O)=O.  (7) 

At the upper boundary, depending on the deformation regime, we must distinguish two types of boundary conditions: 

q = M ,  o ~ = - - N ( ' ~ )  (Sa) 

for a regime with specified force and 

q = M ,  v = v (~) (Sb)  

for a regime with a specified speed of  piston displacement. Let us examine these regimes separately from one another. 

Specified Force Regime. In this case the axial stress is defined entirely by the pressure N(r) applied from without 

and, according to (3), it does not change over the height of the billet: a s = -N(r).  Expressing 0v/Oq in terms of (4) and 

then substituting it into the continuity equation (2), we obtain a kinetic equation for the compression process 

0 p _  4 N(~) 1 - - 0  (9) 
0T 3~]1 p m - *  

This might serve both for purposes of calculating the density distribution p(q, r) and to solve various kinds of  reciprocal 

problems such as, for example, estimating the compression time or the viscosity t h of the solid phase for a known distribution 
of density. Let us take note of the fact that according to (9) the rate of  compression with a nonuniform initial distribution 

of density is clearly independent of the mass coordinate q and is represented in the form of  a product  of  functions where 
one of the functions is dependent on the time r while the other is dependent on the density p. Precisely this form of the 

kinetic compression equation was derived in [2] for the case of uniform density. From this emanates important consequences 
with respect to the nature of the compression process. The compression of any isolated individual volume corresponding 

to the coordinate q and exhibiting an initial density Po(q), given a nonuniform initial distribution of density with respect 

to the coordinate q, will proceed in a manner identical to that of  a uniform density distribution exhibiting the same initial 

density Pp. Such a compression regime may be referred to as regular, in analogy with a regular thermal regime [8] in 
which the effect  of the initial distribution of temperature on the relationship to time on the part of  the temperature within 

the body makes itself apparent only as a dimension and has no effect on the actual nature of this relationship. If we examine 
the relative rate of compression 

Up-- p m-1 op (1o)  
1 - -  p O~ 
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then in Lagrange coordinates this characteristic will depend only on time and will be independent of  the initial distribution 

o pro-1 d9, it becomes of density, regardless of  the form of its nonuniformity. When we introduce the notation d = .t' 1 - -  p 

possible to rewrite Eq. (9) in the form o0 

-g 

3 ~f N ('v) dr. (11) 
J [9 (q, x)] = - -  4n--T, 

In relationship (11), on the right-hand side, we have the familiar time function. However,  there is no difficulty in finding 
the integral J(p) on the lef t-hand side. For whole m this integral is found analytically. In particular, for N(r) = No, m 
= 2, and m = 3 it is easy, analytically, to obtain the following relationship from (11) for the density of  the material as 

a function of  time: 

"~= In 

~-= ln  1--0_o P--I-- po, (12) 
l - - p  

1--9Ol__p ~ - - P o ) - - ( 9 ~ - - 9 ~ 2  ) "  (13) 

These expressions coincide in accuracy with the interpolation formulas proposed in [3] for corresponding m where the 
average integral density -p = fot p(-ff)dff/-ff ( ~  = H / H  o) is a function of the dimensionless time T = 3Nor/4r h,  obtained 
through processing of  numerical results. 

Let us define the velocity field. Since the axial stress does not change through the height of  the compression, 

from (4) we find the velocity gradient: 

O r _  3 1 - - p  NU). (14) 
Oq 4'11 pm+l 

With consideration of the boundary condition at the lower end of the compression, in the integration of  (14) we determine 

the velocity of  material flow 

v(q, r ) - -  3 q 1 - - p  dq. (15) 
4rll N('0.!" 0 m+l 

0 

Assuming that q = M, from (15) we find the relationship which links the operational characteristics of  the compression 
process, i.e., the speed of  the piston and the force exerted on the piston: 

V('Q ~ N(x)F(M), (16) 
4rh 

M 

where F (M) = ( [(1 --p)/pm+l] dq. The determination of  this integral is associated with the preliminary determination 
b 

from (11) of the function p(q, r). Let us find the distribution of  the density and the velocity of  the material under certain 
simplifying assumptions which are of practical significance. For a qualitative analysis we can limit ourselves to simple 
forms of the relationship between the shearing viscosity and density. For example, if the shearing viscosity is linearly 
dependent on density (m = 1), for porosity II = 1 - p and velocity V(r) from (11) and (16) we, respectively, obtain 

H (q, "Q = Ho (q) exp [--A (~)l, (17) 

3 M /-/ 
V (x) = - -  ~ N(g) ~' dq, (18) 

4~11 0' (1 - -  H) ~ 

_ . ,g_. 

where A (x) = _~341ql ! N (x) dx. ,In particular, if the force on the piston is constant N(r) --= No, the expression for the distribution 

of material porosity II(q, r) assumes the following form: 
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Fig. 1. Velocity of piston as a function of applied force for various instants of  time: 

1 ) r  1 = 0 ; 2 - 4 )  r z <  r 3 < r  4. 

Fig. 2. Effect  of the density difference Ap on the velocity of the piston at various instants 

of time: a) r = 0.5; b) r = 1 sec. The force on the piston N o = const = 10 s Pa, and the 

viscosity of the incompressible base 71 = 107 Pa.sec. V, m/sec. 

Fig. 3. Effect  of the initial height of compression on the speed of the piston at a force 

N O = 8.107 Pa, Pu = 0.7, Pl = 0.5, the density difference Ap = 0.2 for the time r -- 1 see: 

a) for rll = 107; b) for ~71 = 101~ Pa.sec. 

/7 (q, "c) =/70 (q) exp (---c/T,), (19) 

where r, = 4~h/3N o is the characteristic compression time. We see that with the passage of  time when r > r,, regardless 

of the form of IIo(q), we encounter the effect of self-equalization in density, such as was discussed in [4]. Let us also 

note that according to (l 9) the characterist ic  time r, is identical for all individual volumes of the compressed material. 

It is convenient to use this relationship to determine the time of material formation prior to the specified residual porosity 

II. Assuming that II << 1 and holding the force to be constant, for the speed of the piston we obtain the following relationship: 

V -- 1 ~ I7o (q) dq exp (--~/x,). (20) 
T,  

As we can see, the function V(N), just as V(r,), for fixed instants of time is nonmonotonic in nature (Fig. 1), which is 

a result of the competitive influence of the load factors and the relationship between the volumetric viscosity and the 

density. It is not difficult to understand that the appearance of the cofactors exp ( - r / r , )  in relationship (20) comes about 

precisely when we take this last factor into consideration. In the function V(N) we can isolated two segments: in the 
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first, the change in density and, consequently, the viscosity are insignificant and fundamental influences exerted by the 

increased load which causes a rise in velocity. In the second segment the influence of the increased density is more significant, 
since it increases the growth of  the volumetric viscosity and, as a consequence, a rise in resistance to deformation. This 

leads to a reduction in velocity. With constant shearing and volumetric viscosities, this effect  is absent and the velocity 
increases in direct proportion to the force. The nature of  the correction factor introduced into the quantitative relationship 

V(N) owing to the initial distribution of density in the porous billet is determined by the physical sense of  the integral 

fo M IIo(q)dq, which is nothing other than the mass of the material contained within the volume of  the billet pores and 
exhibits a given initial nonuniformity.  

The relationship of the initial distribution of density through the mass of  the powder material introduces only 

a quantitative correction into the calculation of the function V(N). In particular, with a constant initial material density 
from (20) we obtain the familiar relationship 

1 
V(x) -- - -  (1 - -  Po) Polio exp ( - - r / r , ) ,  (21) 

T, 

from which it is clear that the above-cited quantitative relationships governing compression pertain in this case as well. 

From the condition dV/dN = 0 we find the coordinates of the extremum points (V*, N*) in V(N): 

N * =  l / r , ,  V*--  1 M e~- . , ( l l - - o )d o .  
0 

Figure 1 shows the family of curves V(N) for various fixed instants of  time r, which in the given case should be 
treated as a parameter. The existence of a maximum value for velocity, dependent only on time and the initial density 
distribution, is a fundamental feature of the compression of compressed materials, governed by the relationships of the 
shearing viscosity and density. The described situation is entirely analogous to the one which prevails in nonisothermal 
flow of a fluid, when the strong nonlinear relationship between viscosity and temperature is brought about by the 

nonmonotonic nature of the dependence of resistance to deformation and the strain rate [9]. 

Specif ied Velocity Regime. In this case V(r) is a known function and the force N(r) has to be determined. For 

purposes of  analyzing the function N(V) we will express N(r) from relationship (16): 

lW (r) = - -  ~ - ~  ~]1 v (T) F -1 (M). (22) 
3 

Assuming that m = 1 and that the porosity II << 1 from (19), we find 

3 M 
- -  - -  N (,) exp [--A (r)l = V (T) i" Ho (q) dq. 

471 0 

This relationship can be rewritten in the form 

d M 
- -  exp [--A f'~)] = kV"c, k = i Ho (q) dq. (23) 

dr b 

Integrating (23), we find that 

exp [--A (r)] = 1 + kV'r. (24) 

Having substituted (23) into (22), we determined N(V): 

N IV (~)1 - 4~h kV (r) 
3 1 + kV iT) r (25) 

Since V < 0, k > 0, it follows from (24) that N(V) is a monotonic function, i.e., the increase in velocity for  fixed instants 

of time lead to an increase in the force. This represents the fundamental difference in a regime with a given velocity 

from a regime with a given force in which the function V(N) is nonmonotonic. 
From the standpoint of practical utilization, of interest is the theoretical formula for the determination of N(V) 

for a uniform distribution of the initial density. In this case, using (22) and carrying out transformations analogous to 

those presented above, we derive the relationship 
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~v(v) - 4,~1 V('~)M/(Ho + V(,)x)(H0 + V(~),~--M), (26) 
3 

which clearly demonstrates the monotonicity of the function N(V). 

Some Computational Results. Let us examine the effect  of  such parameters as the mass and dimensions of the 

compression operation, as well as the initial distribution of density here, insofar as these pertain to the relationship between 

the dynamic kinetic characteristics of the compression process. This relationship is expressed by the velocity of the piston 
as a function of the applied force V(N). The initial density distribution with respect to the coordinate q will be assumed 

in linear form Po(q) = a + bq. When we take into consideration the density values Ou at the upper end of  the billet and 
Pl at the lower end of  the billet we obtain the following form for the initial density distribution in the material being 
compressed: 

p,g . 

where 'q = q/M; Z~p = Pu - Pl represents the density difference for the material. Let us note that a realistic density distribution 
may have a form different  from (27). In such an event the assumed relationship may be treated as an interpolation of 

the nonlinear relationship. The proposed relationship Po(q) corresponds to the initial density distribution in Cartesian. 

coordinates of the form po(Z) = PI~ exp [(Ap/M)z]. The assumed form of Po(q) allows us explicitly to find F(M) from (16) 

and this makes it possible to trace the influence exerted by the initial nonuniformity of  the material. This influence on 
the operational parameters of the process has been investigated on compressed materials of identical mass and volume, 

i.e., for specimens with a constant average density. Figure 2 shows the result from a calculation of  piston speed which 
corresponds, according to (18), to the force N o ; 108 Pa as a function of the magnitude of  the original density difference. 

We see that for  various instants in the compression process (curves a and b correspond to 0.5 and I sec with a characteristic 
compression time r ,  = 2 sec) a change in the density difference from 0.2 to 0.5 has virtually no effect  on the speed of 

the piston. Unlike the density difference,  the mass and dimensions of the materials being compressed significantly affect 
the operational characteristics of  the process. Figure 3 shows the speed of the piston as a function of the initial height 

of the compressed materials, and this varied from 50 to 100 mm at a constant billet mass with a specific density difference 
,~p/H o. Calculations showed that for selected parameters of the process the change in the initial dimensions of the compressed 

materials within the indicated limits leads to a significant increase in velocity: by a factor of  2-3. An analogous result 
is obtained in calculating piston speed as a function of  the varying compression mass whose volume and form of density 

difference are identical at the instant of compression: the increase in billet mass f rom 0.03 to 0.1 kg results in a linear 
increase in piston speed by a factor of 2-3. 

NOTATION 

t, z, time and instantaneous height (Euler coordinates); r, q, time and instantaneous mass (Lagrange coordinates); 
p, density of the material relative to the density of the uncompressed base; M, billet mass; H o, initial height of the compressed 
material; err, era, a,, stress components; v, velocity component in longitudinal direction; )7 and ~, shearing and volumetric 

viscosity; 71, viscosity of uncompressed base; N(r), piston force; V(r), piston speed; II o and H, initial and instantaneous 

material porosity; Po, initial density of compressed material; r, ,  characteristic compression time; Pu, Pl, density at upper 

and lower ends of compressed material; Pl, density of uncompressed base; m, exponent in empirical relationships for viscosity. 
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